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Abstract

We introduce a numerical invariant called the braid alternation number that measures
how far a link is from being an alternating closed braid. This invariant resembles the
alternation number, which was previously introduced by the second author. However,
these invariants are not equal, even for alternating links.

We study the relation of this invariant with others and calculate this invariant for
some infinite knot families. In particular, we show arbitrarily large gaps between the
braid alternation number and the alternation and unknotting numbers. Furthermore, we
estimate the braid alternation number for prime knots with nine crossings or less.

1 Introduction

There exist numerical invariants that measure how far a link is from the set of alternating
links. In particular, the second author introduced the alternation number of a link, [16].
The alternation number of a link diagram D is the minimum number of crossing changes
necessary to transform D into some (possibly non-alternating) diagram of an alternating link.
The alternation number of a link L, denoted by alt(L), is the minimum alternation number
of any diagram of L. The alternation number of L is also the Gordian distance from L to
the set of alternating links. Another numerical invariant was introduced by Adams et al [3].
The dealternating number of a link diagram D is the minimum number of crossing changes
necessary to transform D into an alternating diagram. The dealternating number of a link
L, denoted by dalt(L), is the minimum dealternating number of any diagram of L. A link
with dealternating number £ is also called k-almost alternating. It is immediate from their
definitions that alt(L) < dalt(L) for any link L.

By Alexander’s theorem, it is known that any link can be presented as a closed braid [4];
however, there are alternating links that cannot be presented as alternating closed braids [6].
Then a natural question is the following, what is the minimal number of crossings changes
needed to transform a link into an alternating closed braid? In order to answer this question,
for a link L, we introduce the braid alternation and the braid dealternating numbers, which
are link invariants that measure how far is a link from being an alternating closed braid
and are denoted by Balt(L) and Bdalt(L), respectively. The precise definitions are given
in Section 3. Furthermore, we show that these invariants are independent of the classic
definitions for links. We study the relation between these invariants showing that all of them
are pairwise distinct. The value of these invariants has been obtained for some knot families.
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This paper is organized as follows: In Section 2, we remark some definitions concerning
braids and links, and the relation between them. After that, in Section 3, the braid alternation
number and the braid dealternating number are defined. In Section 4, these invariants are
calculated for some links families, and a large gap between their values is shown. In Section
5, we give a table with the braid alternation and braid dealternating numbers of prime knots
up to 9 crossings.

2 Braids and links

A braid on n-strands is an element of the n-braid group B, which can be expressed as a
word in generators Gy, --,0,_1 where O; is the braid involving a single crossing of the ith
and i + Ist strands. They are related by the following relations:

1. 6,0 = 0,0C;, if |i—j’>1;
2. 6i6;+10; = 0i+10iCi+1, ifi=1,...,n—2.

A braid is said to be alternating if its even-numbered generators have the opposite sign to
its odd-numbered generators. A braid B on n strands is said to be homogeneous if for every
i=1,2,...,n—1 the generator G; appears in [ if and only if (5;1 does not appear. Note that
all alternating braids in which every generator appears at least once are homogeneous.

We call closed braid diagrams to the diagrams of a link that are presented as the closure
of a braid. A link is said to be alternating if and only if it admits an alternating link diagram,
i. e. a diagram with alternating underpasses and overpasses. The trivial link is an example
of an alternating link. Note that an alternating closed braid represents an alternating link, but
not all alternating links can be presented as an alternating closed braid.

As a consequence of Alexander’s theorem, some algorithms have surfaced for obtaining
a closed braid from a given link diagram [26, 25, 14]. In particular, due to the algorithm
from S. Yamada, we note the following.

Theorem 2.1. (cf. Theorem 1.2.2 of [14]) Any link diagram D can be deformed into a closed
braid diagram B such that every crossing in D remains in B.

Proof. This fact is a consequence of the proof given for Theorem 1.2.2 in [14] since
any link diagram is deformed through a finite sequence of concentric deformations such
that the connecting arcs which represent the crossings are preserved after each concentric
deformation until it becomes a system of concentric Seifert circles.

The effect of a concentric deformation in the neighborhood of a crossing due to a con-
centric deformation is shown in Figure 1. In particular, (a), (b), and (c) represent the neigh-
borhood of a crossing in the link diagram, and (d), (e), and (f) represent their corresponding
Seifert circles and connecting arcs. Figures 1 (a) and 1 (d) are before performing the con-
centric deformation. So, any link diagram can be deformed into a closed braid preserving all
the crossings of the original diagram. O
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Figure 1: Diagrams (on the left) and their corresponding Seifert circles with connecting
arcs (on the right) before and after a concentric deformation. The original crossing and the
corresponding connecting arcs are highlighted in blue.

A classical invariant that is hard for computing is the following. The unknotting number
of a link L, denoted by u(L), is defined to be the minimum number of crossing changes
required to convert L into the trivial link overall link diagrams representing L. There is no
algorithm to compute it for a given link until now.

A consequence of Theorem 2.1 is that if the condition ‘overall link diagrams’on the pre-
vious definition is restricted to ‘overall closed braid diagrams’, then the unknotting number
of a link L can still be obtained. Therefore, some invariants such as the unknotting number
and the alternation number can be estimated over the restricted set of closed braid diagrams.

Each link can be presented through diagrams with a distinct number of crossings. A
crossing is reducible if there is a circle in the projection plane meeting the diagram trans-
versely at that crossing, but not meeting the diagram at any other point, see Figure 2. A
diagram is called reduced if it is non-split and none of its crossings are reducible. A braid is
called reduced if its closure is a reduced link diagram. A reduced alternating diagram of a
link L has the minimal number of crossings for its diagrams. In [17], a table of prime links
enumerated by a canonical order up to ten crossings is given, in which each link is presented
as a reduced closed braid.

Figure 2: A reducible crossing.

The Alexander polynomial A(L;t) € Z[ti%] is an isotopy invariant of an oriented link L
[5]. It can be computed by the following recursive relations:

1. A(Ly3t) — AL st) = (12 — 7 2)A(Lost),
2. A(Ust) =1,

where U is the trivial knot; (Ly,L_,Ly) is a skein triple of oriented links which are the same,
except in a crossing neighborhood where they look as shown in Figure 3.
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Figure 3: Skein triple.

Let G(L) be the signature of a link L [21], where the right-hand trefoil knot has signature
2. The signature can be calculated by skein relation.



Lemma 2.2. [8] Suppose K is a knot (but not a link), and D is a regular diagram for K.
Then 6(K) can be determined by means of the following three axioms.

 IfU is the trivial knot, then 6(U) = 0.

» If D4 and D_ are the skein diagrams, then 6(D_) < 6(Dy) < 6(D-)+2.

» IfA(K;t) is the Alexander polynomial of K, then sign(A(K;—1)) = (— 1)T
Lemma 2.3. [20] If u(K) is the unknotting number of the knot K, then |6(K)| < 2u(K) .

For a pair of positive integers (p,q), we define a torus knot or link of type (p,q) as the
closure of the p-braid B = (6,-16,—>...02061)%, which we denote by T'(p,q). The signature
of a torus knot can be calculated recursively, [11]. In particular, 6(T(2,q9)) = ¢ — 1. The
unknotting number of the torus knot 7'(p, g) is determined by Kronheimer and Mrowka [18]:

u(T(p,q)) = W-

3 Braid alternation number and braid dealternating num-
ber

In order to measure the Gordian distance between a link and the set of links that can be
presented as alternating closed braids, we introduce the following new numerical invariant.

Definition 3.1. The braid alternation number of a closed braid diagram D is the minimum
number of crossing changes necessary to transform D into some (possibly non-alternating)
diagram of an alternating closed braid. The braid alternation number of a link L, denoted
by Balt(L), is the minimum braid alternation number of any closed braid diagram of L.

By definition, the alternation number is smaller than or equal to the braid alternation
number. But, we affirm that the alternation number is not equal to the braid alternation
number since the alternating links have alternation number zero, and some of them cannot
be presented as alternating closed braids. One way to prove this fact is by Lemma 3.2. A
link is called fibered if its exterior is a surface bundle over S' such that each fiber is a Seifert
surface for the link.

Lemma 3.2. Let L be a non-split link. If Balt(L) = O, then L is fibered.

Proof. Let L be a non-split link with Balt(L) = 0. Then L can be presented as the closure
of an alternating braid. Since any alternating braid that does not close to a split link is ho-
mogeneous, L is fibered due to Stallings [24]. 0J

In particular, we can see that the braid alternation number is not equal to the alternation
number as follows. Since the knot 5; is alternating, then alf(5;) = 0. However, as the knot
5, is non-fibered, from Lemma 3.2, it follows that Balt(5;) # 0. It is well known that an
alternating link is fibered if and only if the leading coefficient of its Alexander polynomial is
+1 (see [22, 23] cf. [6]). Lemma 3.2 implies that for a non-split alternating link L we have
that Balt (L) # 0 if the leading coefficient of its Alexander polynomial is different to +1.

Another form of determining whether the prime links do not have an alternating closed
braid diagram is by using reduced closed braid diagrams, as shown in Lemma 3.3.
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Lemma 3.3. Every prime alternating closed braid D is deformed into a reduced alternating
closed braid.

Proof. Assume an alternating closed braid has a reducible crossing point p, see Figure 4.
Let p= G?El. Since p is reducible, the closed braid D does not contain any other Giﬂ. Let
D1 and D; be the closed braids obtained from the closed braid D by splicing at p. Since D is
prime, D or D; is a closed braid of the trivial knot. Say D is a trivial knot diagram. Then
D; is an alternating closed braid deformed from D. By continuing this process on reducible
crossings, we obtain a reduced alternating closed braid. OJ

L

Figure 4: An alternating closed braid with a reducible crossing point.

Note 3.4. A consequence of Lemma 3.3, due to the solution of the Tait conjecture, is the
following: If K is a prime knot with Balt(K) = 0, there exists an alternating closed braid
diagram D of K such that ¢(D) = ¢(K), where c(D) and c¢(K) are the crossing numbers of D
and K, respectively.

Consequently, if a prime knot K does not have a reduced alternating closed braid diagram,
Balt(K) # 0. Therefore, since the knot 5, does not have a reduced alternating closed braid
diagram [17], it is not possible to present it as an alternating closed braid.

Note 3.5. The converse of Lemma 3.2 does not hold. An example of this fact is given when
considering the knot 100, which is a prime alternating fibered knot. However, since this
knot does not have an alternating closed braid diagram with ten crossings, see [17] and [9],
it follows that Balt(10g0) # O.

The braid alternation number resembles the alternation number. Similarly, we define an
invariant that resembles the dealternating number.

Definition 3.6. The braid dealternating number of a closed braid diagram D is the mini-
mum number of crossing changes necessary to transform D into an alternating closed braid
diagram. The braid dealternating number of a link L, denoted by Bdalt(L), is the minimum
dealternating number of any closed braid diagram of L.

It follows that Balt(L) < Bdalt(L). The braid dealternating number is not equal to deal-
ternating number, as before, if we consider the alternating knot 5,, we note that dalt(5;) =0
and Bdalt(5;) > 1 since Balt(5;) > 1. The following relations between these numerical
invariants follow from their definitions.

dalt(L) < Bdalt(L)
VI VI (D)
alt(L) < Balt(L)

By Lemma 3.2, there exist links whose alternation numbers are different from their braid
alternation numbers, however also there exist links with the alternation number equal to the
braid alternation number, as Theorem 4.1 shows.

A property of the braid alternation number is that it is subadditive under connected sum.
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Proposition 3.7. Let L) and Ly be two links then Balt(L#L,) < Balt(L,) + Balt(L,), where
# denotes a connected sum of L and L,.

Proof. Let B and Bg be two closed braid diagrams of links L and L,, respectively, such
that Balt(B¢) = Balt(Li) = a and Balt(B5) = Balt(Ly) = b where a,b € NU{0}. Let B;
and B; be alternating closed braids obtained from B{ and B’z’ by a crossing changes and b
crossing changes, respectively. Let Li#L, be a connected sum of L; and L;, and let BCI‘#BIZ7
be a connected sum of Bf and Bg such that B‘l’#Bg is a diagram of L1#L,. The diagram
B‘ll#Bg can be presented as a closed braid B*?, which through a + b crossing changes is
transformed into an alternating closed braid of B1#B>, such that the crossings outside of B
and B; are one or two crossings with signs adequately chosen depending on the sign of the
generators of By and B, see Figure 5. It follows that Balt(B**?) = Balt(B%) + Balt(B5).
Then, Balt(Ll#Lz) < Balt(Ll) —l—Ball‘(Lz). O

Figure 5: Alternating connected sum of two alternating closed braids. In the first case, the
last generator of By has a negative sign equal to the sign of the first generator of B;. In the
second case, these generators have different signs.

In the next section, we shall see that the inequality in Proposition 3.7 becomes equality
for particular links. Besides, we shall estimate the invariants in Inequality (1) for some link
families.

4 Link families

In the previous section, we saw that the braid alternation and braid dealternating numbers
are distinct from the alternation, dealternating numbers, respectively. However, there exist
links with the same value for all these invariants. In particular, for a family of closed 3-braids,
we have the following theorem.

Theorem 4.1. Let K be a knot such that is the closure of a 3-braid of the form
r
A2n H G{)i Ggi
i=1

where n > 0, pi,qi > 2 fori=1,2,....r, and A = 6106,0].
Then we have alt(K) = Balt(K) = dalt(K) = Bdalt(K) =n+r— 1.

Proof. Abe and Kishimoto in [2, Thm 3.1] showed that alt(K) = dalt(K) =n+r—1.
Then, due to Inequality (1), we have that Bdalt(K) > Balt(K) > n+r—1. On the other

hand, following their idea, the braid A¥*[];_, 6%'c¥ can be written as [} 67c}", where



l;,m; € N, by the following equalities.
Aol 0% = (526702)" 07" [ [ of 0%
i=1 i=1

=0,(6763)" 616,67 Hcl’

If r =1, then

2 !
AQ"HGP’GZ = (6763)" 'oior0 el T

If » > 2, then
2n P _ 2\n—1.2 2ntp1 _qi P Prodrtl
A IIG’62—6162) l616207" "6 [”c’ ]G’ T

A diagram of the closure of A%" [T 161 62 with n + r factors 611’631" is given in Figure 6

(a). We can deform this diagram to obtain a closed braid diagram D such that Bdalt(D) =
n+r—1, as shown in Figure 6 (b). Performing alternatively n+ r — 1 crossing changes in
the modified strand, we obtain a closed alternating braid. Therefore, Bdalt(K) <n+r—1
and consequently Balt(K) = Bdalt(K) =n+r—1. O

Figure 6: Two equivalents closed braids

On the other hand, the first author in [12] gave a family of hyperbolic prime knots, de-
noted by D, where the difference between the alternation and the dealternating numbers of
each knot is arbitrarily large. The family was constructed by concatenating a 3-braid of
form G%l“ (626162)?" with [+ 1,n € N and a 3-tangle, denoted by c, as shown in Figure
7. The upper bound of the alternation number was obtained performing a crossing change
in 3-tangle c¢. The diagram after that crossing change is a diagram of either a torus knot of
two strands or the trivial knot. Two equivalent diagrams of a knot diagram in D, after that

crossing change, are shown in Figure 8.



Figure 7: On the left 3-tangle ¢ and on the right a knot diagram of D.

Lemma 4.2. [12] For each n € N, there exists an infinite knot family D, in D such that if
K € D, then alt(K) = 1 and dalt(K) =

|
@W%\ﬁ/} ( * )
/ / / / )
Figure 8: Two equivalent diagrams; the first one is a knot diagram in D after a crossing
change at c; the second one is a diagram of the torus knot 7'(2,3).

Similarly to the gap between the classical alternation number and the dealternating num-
ber, for each positive integer n, there exists a family of infinitely many hyperbolic prime
knots with braid alternation number 1 and braid dealternating number greater than or equal
to n, whose braid index is n + 3.

Theorem 4.3. For each n € N, there exists an infinite knot family D), in D such that if K € D,,
then alt(K) = Balt(K) = 1 and Bdalt(K) > n

Proof. Let K be a knot in 2,. Lemma 4.2 implies that if K is a knot in D, then alt(K) =
1. Consequently, Balt(K) > 1. We will prove that Balt(K) < 1. Let D be a diagram of
K, for instance, the diagram in Figure 7. After a crossing change in 3-tangle ¢ of D, this
diagram becomes a knot diagram D', see Figure 8. Hence, D' is a diagram of either a torus
knot of two strands or the trivial knot and can be presented as an alternating closed braid.
By Theorem 2.1, we know that D can be deformed into a closed braid B whose crossings
include all crossings of D, an example is shown in Figure 9. Then, B after a crossing change
in the corresponding crossing of 3-tangle c yields to an alternating closed braid. Therefore,
Balt(K) = 1. Besides, Lemma 4.2 implies that if K is a knot in D,, then the dealternating
number of K is n. Therefore, due to Inequality (1), we have that Bdalt(K) > n. 0

/-

(Q_/\\ 241421 \—/\\/\ /\‘/\ /\‘/\
P0G /? e

Figure 9: A closed braid diagram of K in D with n = 3.

The second author in [15] defined a distance to the set of fibered links as follows.

Definition 4.4. The fibering number f(D) of a link diagram D is the minimum number of
crossing changes necessary to transform D into a diagram of a fibered link.

The fibering number of a link L, denoted by f (L), is the minimum fibering number of any
diagram of L.



Prime knots up to 10 crossings have fibering numbers less or equal to 1 [10]. However,
there are many knots with larger fibering numbers [15].

It follows from their definitions, Theorem 2.1, and Lemma 3.2 that f(L) < Balt(L), for
any link L. Furthermore, due to Theorem 2.1 and the fact that the trivial link can be presented
as an alternating closed braid, the unknotting number of a link L is an upper bound of the
braid alternation number of L. Then, for a link L, we have the following relations between
these numerical invariants.

dalt(L) < Bdalt(L)

VI VI

alt(L) < Balt(L) < u(L) ()
VI
f(L)

Proposition 4.5. For all n € N, there exists a knot K such that Balt(K) = n and alt(K) = 0.

Proof. Let K be the n-fold connected sum of a twisted double of the trivial knot with
Alexander polynomial A(L;t) = mt? 4 (1 — 2m)t +m for m € N with |m| > 2. The knot K
has both the fibering number and unknotting number equal to n, [15]. Hence, it follows from
inequality (2) that Balt(K) = n. On the other hand, since the twisted double of the trivial
knot is alternating, and the connected sum of alternating knots is alternating, we have that
alt(K) =0. O

In particular, the knot 5, is a twisted double of the trivial knot with Alexander polynomial
A(L;t) = 2¢%2 — 3¢ + 2. Then, the n-fold connected sum of the knot 5, has alternation number
zero and braid alternation number n. Thus, an arbitrarily large gap between the alternation
number and the braid alternation number is shown. Since the knot considered is alternating,
that gap implies another large gap between the dealternating number and the braid dealter-
nating number. In a similar way, we can obtain a gap between the fibering number and the
braid alternation number.

Proposition 4.6. For all n € N, there exists a knot K such that Balt(K) = n and f(K) = 0.

Proof. Let K be the n-fold connected sum of the knot 94;. The knot K has alternation
number n, [1]. Since the unknotting number of the knot 94; is 1, we can conclude from
inequality (2) that Balt(K) = n. On the other hand, since the connected sum of fibered knots
is fibered [7] and f(942) = 0, we have that f(K) = 0. O

Besides, we can obtain a gap between the unknotting number and the braid alternation
number.

Proposition 4.7. For all | € N, there exist infinitely many knots K such that Balt(K) = 1 and
I <u(K)<I+1.

Proof. Let K be a knot of the family D given at [12], i.e. the closure of the product of
the 3-braid G%H'IAZ” with /,n € N and the 3-tangle c. It follows from Lemma 4.2 that the
knot K has braid alternation number 1. Let D be the diagram of K with the orientation such
that the crossings in the tangle ¢ are positives. After one crossing change at ¢, we obtain
a diagram D_, which is a diagram of the knot 7(2,2/ 4 1). Since u(7(2,2/41)) =1 and
6(T (2,214 1)) =2l for I € N, it follows from Lemmas 2.2 and 2.3 that / < u(K) <I+1. O



Furthermore, the Alexander polynomial of a knot K € D has been obtained in [13]. So,
for all /,n € N, we have that (3) holds.

A(K;t) _ —|—(—l)l—l—(—l‘_l—tl+t_(l+1)—{—ll+l)

Y () ()
i=1

_|_(tf(l+n) + A tf(l+n+1) . tl+n+1). (3)

In consequence we have that A(K; —1) = (—1) (2 +1+4(—1" —1)). From Lemma 2.2, it
follows that 6(K) = 2/ except when / < 3 and n is odd. Hence, u(K) =+ 1ifl <3 and n is
odd.

5 Table of prime knots

In [17], prime links with braid index up to 10 are ordered by employing reduced closed
braid diagrams, which have the minimal number of crossings. By using this enumeration,
braid presentations in [19], and Lemma 3.3, we discern prime knots K up to nine crossings
such that Balt(K) = 0, see Table 1.

Note that due to Lemma 3.2, we can determine the knots up to 9 crossings with Balt(K) #
0. But, Lemma 3.2 is not useful to determine the value of Balt(K) for all knots with 10
crossings or more. In those cases, Lemma 3.3 can be used instead. However, for links with
11 crossings or more, an enumeration of reduced closed braids is needed.

For each prime knot K up to nine crossings with Balt(K) # 0, we estimate an upper
bound of its braid alternation number. In particular, we calculate the Bdalt(K) for all these
knots. In the cases of the knots 9, and 939, the unknotting number is used instead of only
Bdalt(K). For the knots 935, 933, 941, 948, and 949, the braid alternation number is calculated
directly from their diagrams.

The invariant Balt(K) has been obtained for all prime knots up to 9 crossings except for
83,95, and 935. In the remaining cases, other criteria are needed to determine whether these
knots are related by a crossing change to knots with Balt(K) = 0 and whether Balt(K) =
Bdalt(K) for these knots.

Example 5.1. Previously, we obtained that 1 < Balt(5;). An upper bound of Balt(5;) can
be estimated by using the unknotting number or the braid dealternating number Bdalt(5).
In Figure 10, braids whose closures are the knot 5, are given; the braid in (c) yields to be
alternating after a crossing change. Then Balt(52) = Bdalt(5;) = 1.

X I PN AN
OO O Fooad™

Figure 10: Braids whose closures are the knot 5;,. The last one after a crossing change
becomes alternating.
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Knot | alt | Balt | Bdalt Knot | alt | Balt | Bdalt Knot | alt | Balt | Bdalt
3 0 0 0 815 0 1 1 977 0 0 0
4 0 0 0 816 0 0 0 953 0 1 1
51 0 0 0 817 0 0 0 94 0 0 0
5, 0 1 1 813 0 0 0 955 0 1 1
61 0 1 1 819 1 1 1 9% 0 0 0
67 0 0 0 820 1 1 1 957 0 0 0
63 0 0 0 821 1 1 1 978 0 0 0
74 0 0 0 9 0 0 0 99 0 0 0
7o 0 1 1 9, 0 1 [1,2] 939 0 0 0
73 0 1 1 93 0 1 1 931 0 0 0
74 0 1 1 94 0 1 1 93, 0 0 0
75 0 1 1 95 0 [[1,2] | [1,2] 933 0 0 0
76 0 0 0 9% 0 1 1 934 0 0 0
77 0 0 0 97 0 1 1 935 0 |[1,2] | [1,2,3]
81 0 1 1 9g 0 1 1 936 0 0 0
8> 0 0 0 99 0 1 1 937 0 1 1
83 0 |[1,2]| [1,2] 910 0 1 1 933 0 1 [1,2]
84 0 1 1 911 0 0 0 939 0 1 [1,2,3]
85 0 0 0 912 0 1 1 940 0 0 0
86 0 1 1 913 0 1 1 941 0 1 [1,2,3]
87 0 0 0 914 0 1 1 94 1 1 1
83 0 1 1 95 0 1 1 943 1 1 1
89 0 0 0 96 0 1 1 944 1 1 1
810 0 0 0 917 0 0 0 945 1 1 1
811 0 1 1 918 0 1 1 46 1 1 1
812 0 0 0 99 0 1 1 947 1 1 1
813 0 1 1 999 0 0 0 948 1 1 [1,2]
814 0 1 1 9,1 0 1 1 949 1 1 [1,2,3]

Table 1: Prime knots up to 9 crossings with their alternation, braid alternation, and braid
dealternating numbers.
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